Environmental Epidemiology

ISSN 2519-8289 (Online)

The Space & Time of the infectious processes

gallery/stat147-01

COVID-19: Politics, Economy, Social determinants

 

Fahim Aslam. Controlling Pandemics: solutions to prevent the next pandemic. Environmental Epidemiology. Preprint. 07.06.2020.  DOI: 10.13140/RG.2.2.16370.94402

 

Fiedler, Beth Ann. Diffusion of COVID-19 in the United States:  Politics, Social Determinants, or Neither?  Environmental Epidemiology. 2020,14, 4, 4-25.

 

Fiedler Beth Ann.  Investigating COVID-19: Quantifying recurring methodological problems in the study of infectious disease, part 1. Environmental Epidemiology. 2020, 14, 3, 4 – 12.

 

Fiedler Beth Ann. Investigating COVID-19: Quantifying recurring methodological problems in the study of infectious disease, part 2. Environmental Epidemiology. 2020, 14, 3, 13 – 22.

 

Medical Geography & Infectious Ecology of COVID-19

GIS in Medical Geography & Infectious Ecology

 

Fiedler, Beth Ann and Nikolaenko, Dmitry. Investigating COVID-19: Quantifying recurring methodological problems in the study of infectious disease, Introduction. Environmental Epidemiology. 2020, 14, 2, 4 – 12.

 

Fiedler, Beth Ann and Nikolaenko, Dmitry. Investigating COVID-19: Quantifying recurring methodological problems in the study of infectious disease, Introduction. Preprint. DOI: 10.13140/RG.2.2.28731.77605/1

 

Nikolaenko, Dmitry & Fiedler, Beth Ann. Dynamic and selective geography of COVID-19: Impact groups and their place in the infection process, Part 1. Environmental Epidemiology. 2020, Preprint (in Russian).  

 

Nikolaenko Dmitry and Beth Ann Fiedler. Dynamic and selective geography of COVID-19: impact groups and their place in the infection process. Part 2. Environmental Epidemiology. 2020, Preprint (in Russian).  DOI: 10.13140/RG.2.2.24750.46404

 

Nikolaenko Dmitry and Fiedler Beth Ann. S-Theory about COVID-19: protozoa – microorganisms hydrobionts - human infectious diseases. Environmental Epidemiology. 2020, Preprint (in Russian).  DOI: 10.13140/RG.2.2.32691.78884

 

Nikolaenko Dmitry and Beth Ann Fiedler. Experimental Infectious Ecology: hypothesis of origin COVID-19 and its verification. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.16171.80165

 

Nikolaenko Dmitry and Fiedler Beth Ann. Experimental Infectious Ecology: hypothesis of origin COVID-19 and its verification. Environmental Epidemiology. 2020, Preprint (in English).  DOI: 10.13140/RG.2.2.17744.66560

 

 

***

Nikolaenko Dmitry.  Unexpected deterioration of a local infectious situation related to COVID-19: theory and methodology of surveys local infectious activity at the earliest stages of manifestation. July 2020. DOI:  10.13140/RG.2.2.22537.47204

 

Nikolaenko Dmitry. SARS-CoV-2, COVID-19 and water: bibliography Version 1.2. July 2020. DOI:  10.13140/RG.2.2.26050.20164

 

Nikolaenko Dmitry. SARS-CoV-2 and the water environment: discovery of the pathogen in the sample dated March 12, 2019 in Barcelona and its interpretation. July 2020. DOI: 10.13140/RG.2.2.31298.40649

 

Nikolaenko Dmitry. SARS-CoV-2 and water: bibliography. June 2020. DOI: 10.13140/RG.2.2.19878.75849

 

Nikolaenko Dmitry. Fresh water and COVID-19: a fundamental gap in scientific knowledge regarding manifestation of the pathogenic properties of microorganism. June 2020. DOI: 10.13140/RG.2.2.17611.21287

 

Nikolaenko Dmitry. Advanced geographical algorithm of the site detection of activation pathogenic properties of microorganisms and adaptation hypothesis of origin COVID-19. Conference: 18.06.2020. Kiev, Ukraine

 

Nikolaenko Dmitry. COVID-19: pandemic research methodology and terminology of Infectious ecology. June 2020.  DOI: 10.13140/RG.2.2.29245.49128

 

Nikolaenko Dmitry. Advanced geographical algorithm of the site detection of activation pathogenic properties of microorganisms (version 3.1). June 2020. DOI: 10.13140/RG.2.2.20693.86246

 

Nikolaenko Dmitry. Medical geography and infectious ecology of COVID-19 in the United States: approaches to a systematic GIS description. Environmental Epidemiology. 2020. Preprint. DOI: 10.13140/RG.2.2.28685.97768

 

Nikolaenko Dmitry. Data on COVID-19: scientific and homely reflection, associated with a pandemic. Environmental Epidemiology. 2020. Preprint. DOI: 10.13140/RG.2.2.31641.65127

 

Nikolaenko Dmitry. Investigation of Legionella freshwater bodies in connection with the adaptation hypothesis origin of COVID-19: Theory and Methodology. DOI: 10.13140/RG.2.2.23585.63842

 

Nikolaenko Dmitry. Adaptation hypothesis of the origin COVID-19: clarification of terminology. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.35257.52322

 

Nikolaenko Dmitry. Adaptation hypothesis of the manifestation of spring viral infectious diseases: case of COVID-19. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.20688.87043

 

Nikolaenko Dmitry. Attempts at lawsuits against China and the catastrophic failure of dogmatic epidemiology in explaining of COVID-19. May 2020 DOI: 10.13140/RG.2.2.10566.91206

 

Nikolaenko Dmitry.  COVID-19 and stem cell treatment prospects. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.22183.09128

 

Nikolaenko Dmitry (2020). Crisis as a new opportunity: COVID-19 and the old hidden problems of infectious disease research. Environmental Epidemiology. Preprint (in Russian).  DOI: 10.13140/RG.2.2.26872.19209

 

 

SARS-CoV-2 and water: bibliography

Done on June 27, 2020

 

  1. Ahmed, W., Angel, N., Edson, J., et al., 2020. First Confirmed Detection of SARS-CoV- 2 in Untreated Wastewater in Australia: A Proof of Concept for the Wastewater Surveillance of COVID-19 in the Community. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.138764. 2019 Feb 20.

  2. Alexyuk, M.S., Turmagambetova, A.S., Alexyuk, P.G., et al., 2017. Comparative study of viromes from freshwater samples of the Ile-Balkhash region of Kazakhstan captured through metagenomic analysis. VirusDis 28, 18e25. https://doi.org/ 10.1007/s13337-016-0353-5.
  3. Amirian, E. S. Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. Int. J. Infect. Dis. 95, 363–370 (2020). 
doi:10.1016/j.ijid.2020.04.057 

  4. Bibby, K., Peccia, J., 2013. Identification of viral pathogen diversity in sewage sludge by metagenome analysis. Environmental Science & Technology 47, 1945e1951.
  5. Bibby, K., Viau, E., Peccia, J., 2011. Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett. Appl. Microbiol. 52, 386e392.

  6. Blanco, A., Abid, I., Al-Otaibi, N., Perez-Rodriguez, F.J., Fuentes, C., Guix, S., Pinto, R.M., Bosch, A., 2019. Glass wool concentration optimization for the detection of enveloped and non-enveloped waterborne viruses. Food and Environmental Virology 11, 184e192.
  7. Carrea, L. & Merchant, C. J. GloboLakes: Lake Surface Water Temperature (LSWT) v4.0 (1995-2016). Cent. Environ. Data Anal. (2019). 
doi:10.5285/76a29c5b55204b66a40308fc2ba9cdb3
  8. Casanova, L., Rutala, W.A., Weber, D.J., Sobsey, M.D., 2009. Survival of surrogate coronaviruses in water. Water Res. 43, 1893e1898.
  9. Chin, A. et al. Stability of SARS-CoV-2 in different environmental conditions. 341 medRxiv 2020.03.15.20036673 (2020). doi:10.1101/2020.03.15.20036673
  10. Collomb, J., Laporte, J., Vautherot, J.F., Schwartzbrod, L., 1986. Recherche des coronavirus dans l’eau. Note I. Adsorption et elution des coronavirus sur poudre de verre [Research on coronaviruses in water. I. Adsorption and elution of the coronavirus on glass powder]. Virologie, 37 (2), 95e105.
  11. Damas, J. et al. Broad Host Range of SARS-CoV-2 Predicted by Comparative and Structural Analysis of ACE2 in Vertebrates. bioRxiv 2020.04.16.045302 (2020). 
doi:10.1101/2020.04.16.045302 

  12. Derraik, J. G. B., Anderson, W. A., Connelly, E. A. & Anderson, Y. C. Rapid evidence summary on SARS-CoV-2 survivorship and disinfection, and a reusable 
PPE protocol using a double-hit process. medRxiv (2020). 
doi:10.1101/2020.04.02.20051409 

  13. Esper, F., Ou, Z., Huang, Y.T., 2010. Human coronaviruses are uncommon in patients with gastrointestinal illness. J. Clin. Virol. 48 (2), 131e133. https://doi.org/ 10.1016/j.jcv.2010.03.007.

  14. Giuseppina La Rosa, Lucia Bonadonna, Luca Lucentini, Sebastien Kenmoe, Elisabetta Suffredini. Coronavirus in water environments: Occurrence, persistence and concentration methods - A scoping review. Water Research Volume 179, 15 July 2020, 115899. https://doi.org/10.1016/j.watres.2020.115899
  15. Gundy, P. M., Gerba, C. P. & Pepper, I. L. Survival of Coronaviruses in Water and 355 Wastewater. Food Environ. Virol. 1, 10–14 (2009). doi:10.1007/s12560-008-9001-6
  16. Gundy, P., Gerba, C., Pepper, I.L., 2019. Survival of coronaviruses in water and wastewater. Food Environ Virol 1 (1), 10, 2009.

  17. Huyvaert, K. P. et al. Freshwater Clams As Bioconcentrators of Avian Influenza Virus in Water. Vector-Borne Zoonotic Dis. 12, 904–906 (2012). 
doi:10.1089/vbz.2012.0993 

  18. Jevsnik, M., Steyer, A., Zrim, T., et al., 2013. Detection of human coronaviruses in simultaneously collected stool samples and nasopharyngeal swabs from hospitalized children with acute gastroenteritis. Virol. J. 10, 46. https://doi.org/10.1186/1743-422X-10-46. Published 2013 Feb 5.
  19. Jones, T. C. et al. An analysis of SARS-CoV-2 viral load by patient age. Report, 363 (2020).
  20. Keller, V. D. J., Williams, R. J., Lofthouse, C. & Johnson, A. C. Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors. Environ. Toxicol. Chem. 33, 447–452 (2014). doi:10.1002/etc.2441 

  21. La Rosa G., M. Iaconelli, P. Mancini, G. Bonanno Ferraro, C. Veneri, L. Bonadonna, L. Lucentini, E. Suffredini. First detection of SARS-CoV-2 in untreated wastewaters in Italy. https://doi.org/10.1101/2020.04.25.20079830.
  22. La Rosa, G. et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. 349 Sci. Total Environ. 736, 139652 (2020). doi:10.1016/j.scitotenv.2020.139652
  23. La Rosa, G., Bonadonna, L., Lucentini, L., Kenmoe, S. & Suffredini, E. Coronavirus in water environments: Occurrence, persistence and concentration methods - A scoping review. Water Res. 179, 115899 (2020) doi:10.1016/j.watres.2020.115899 

  24. Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J. & Hsueh, P. R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial 
Agents 55, 105924 (2020). doi:10.1016/j.ijantimicag.2020.105924 

  25. Lavezzo, E. et al. Suppression of COVID-19 outbreak in the municipality of Vo, Italy. 347 medRxiv 2020.04.17.20053157 (2020). doi:10.1101/2020.04.17.20053157
  26. Lee, P.-I. & Hsueh, P.-R. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J. Microbiol. Immunol. Infect. 53, 365–367 (2020). doi:10.1016/j.jmii.2020.02.001 

  27. McBride, G. B., Stott, R., Miller, W., Bambic, D. & Wuertz, S. Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States. Water Res. 47, 5282–5297 (2013). doi:10.1016/j.watres.2013.06.001 

  28. Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., Brouwer, A., 2020. Presence of SARS-Coronavirus-2 in sewage. https://doi.org/10.1101/2020.03.29.20045880.
  29. Nikitin, N., Petrova, E., Trifonova, E. & Karpova, O. Influenza Virus Aerosols in the 418 Air and Their Infectiousness. Adv. Virol. (2014). doi:10.1155/2014/859090
  30. Nikolaenko Dmitry (2020). Crisis as a new opportunity: COVID-19 and the old hidden problems of infectious disease research. Environmental Epidemiology. Preprint (in Russian).  DOI: 10.13140/RG.2.2.26872.19209
  31. Nikolaenko Dmitry. Adaptation hypothesis of the manifestation of spring viral infectious diseases: case of COVID-19. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.20688.87043
  32. Nikolaenko Dmitry. Adaptation hypothesis of the origin COVID-19: clarification of terminology. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.35257.52322
  33. Nikolaenko Dmitry. Advanced geographical algorithm of the site detection of activation pathogenic properties of microorganisms and adaptation hypothesis of origin COVID-19. Conference: 18.06.2020. Kiev, Ukraine
  34. Nikolaenko Dmitry. Advanced geographical algorithm of the site detection of activation pathogenic properties of microorganisms (version 3.1). June 2020. DOI: 10.13140/RG.2.2.20693.86246
  35. Nikolaenko Dmitry. COVID-19: pandemic research methodology and terminology of Infectious ecology. June 2020.  DOI: 10.13140/RG.2.2.29245.49128
  36. Nikolaenko Dmitry. Data on COVID-19: scientific and homely reflection, associated with a pandemic. Environmental Epidemiology. 2020. Preprint. DOI: 10.13140/RG.2.2.31641.65127
  37. Nikolaenko Dmitry. Investigation of Legionella freshwater bodies in connection with the adaptation hypothesis origin of COVID-19: Theory and Methodology. DOI: 10.13140/RG.2.2.23585.63842
  38. Nikolaenko Dmitry. Medical geography and infectious ecology of COVID-19 in the United States: approaches to a systematic GIS description. Environmental Epidemiology. 2020. Preprint. DOI: 10.13140/RG.2.2.28685.97768
  39. Nikolaenko Dmitry. Fresh water and COVID-19: a fundamental gap in scientific knowledge regarding manifestation of the pathogenic properties of microorganism. June 2020. DOI: 10.13140/RG.2.2.17611.21287
  40. Nikolaenko, Dmitry & Fiedler, Beth Ann. Dynamic and selective geography of COVID-19: Impact groups and their place in the infection process, Part 1. Environmental Epidemiology. 2020, Preprint (in Russian).  
  41. Nikolaenko Dmitry and Beth Ann Fiedler. Dynamic and selective geography of COVID-19: impact groups and their place in the infection process. Part 2. Environmental Epidemiology. 2020, Preprint (in Russian).  DOI: 10.13140/RG.2.2.24750.46404
  42. Nikolaenko Dmitry and Beth Ann Fiedler. Experimental Infectious Ecology: hypothesis of origin COVID-19 and its verification. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.16171.80165
  43. Nikolaenko Dmitry and Fiedler Beth Ann. Experimental Infectious Ecology: hypothesis of origin COVID-19 and its verification. Environmental Epidemiology. 2020, Preprint (in English).  DOI: 10.13140/RG.2.2.17744.66560
  44. Nikolaenko Dmitry and Fiedler Beth Ann. S-Theory about COVID-19: protozoa – microorganisms hydrobionts - human infectious diseases. Environmental Epidemiology. 2020, Preprint (in Russian).  DOI: 10.13140/RG.2.2.32691.78884
  45. Olds, H. T. et al. High levels of sewage contamination released from urban areas after storm events: A quantitative survey with sewage specific bacterial indicators. PLOS Med. 15, e1002614 (2018). doi:10.1371/journal.pmed.1002614 

  46. Penn, R., Ward, B. J., Strande, L. & Maurer, M. Review of synthetic human faeces and faecal sludge for sanitation and wastewater research. Water Res. 132, 222–240 
(2018). doi:10.1016/j.watres.2017.12.063 

  47. Rodino, K. G. et al. Evaluation of saline, phosphate buffered saline and minimum essential medium as potential alternatives to viral transport media for SARS-CoV-2 testing. Journal of clinical microbiology (2020). doi:10.1128/JCM.00590-20 

  48. Rodríguez, R. A., Polston, P. M., Wu, M. J., Wu, J. & Sobsey, M. D. An improved  infectivity assay combining cell culture with real-time PCR for rapid quantification of human adenoviruses 41 and semi-quantification of human adenovirus in sewage. 
Water Res. 47, 3183–3191 (2013). doi:10.1016/j.watres.2013.03.022 

  49. Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Crit. 
Rev. Environ. Sci. Technol. 45, 1827–1879 (2015). 
doi:10.1080/10643389.2014.1000761 

  50. Rusiñol, M. et al. Evidence of viral dissemination and seasonality in a Mediterranean river catchment: Implications for water pollution management. J. Environ. Manage. 
159, 58–67 (2015). doi:10.1016/j.jenvman.2015.05.019 

  51. Sedji, M. I. et al. Quantification of human adenovirus and norovirus in river water in the north-east of France. Environ. Sci. Pollut. Res. 25, 30497–30507 (2018).  doi:10.1007/s11356-018-3045-4 

  52. Shutler, Jamie & Zaraska, Krzysztof & Holding, Thomas & Machnik, Monika & Uppuluri, Kiranmai & Ashton, Ian & Migdal, Lukasz & Dahiya, Ravinder. (2020). Risk of SARS-CoV-2 infection from contaminated water systems. 10.1101/2020.06.17.20133504.
  53. Vabret, A., Dina, J., Gouarin, S., Petitjean, J., Corbet, S., Freymuth, F., 2006. Detection of the new human coronavirus HKU1: a report of 6 cases. Clin. Infect. Dis. 42 (5), 634e639. https://doi.org/10.1086/500136.
  54. Wang, Q., Vlasova, A.N., Kenney, S.P., Saif, L.J., 2019. Emerging and re-emerging coronaviruses in pigs. Curr Opin Virol 34, 39e49. https://doi.org/10.1016/ j.coviro.2018.12.001.
  55. Wang, X.-W. et al. Study on the resistance of severe acute respiratory syndrome- associated coronavirus. J. Virol. Methods 126, 171–177 (2005). 
doi:10.1016/j.jviromet.2005.02.005 

  56. Wang, X.W., Li, J.S., Guo, T.K., et al., 2005c. Concentration and detection of SARS coronavirus in sewage from Xiao tang Shan hospital and the 309th hospital [published correction appears in J virol methods. 2005 dec;130(1-2):210]. J Virol Methods 128 (1e2), 156e161.
  57. Wang, X.W., Li, J.S., Jin, M., Zhen, B., Kong, Q.X., Song, N., Xiao, W.J., Yin, J., Wei, W., Wang, G.J., By, Si, Guo, B.Z., Liu, C., Ou, G.R., Wang, M.N., Fang, T.Y., Chao, F.H., Li, J.W., 2005a Jun. Study on the resistance of severe acute respiratory syndrome-associated coronavirus. J Virol Methods 126 (1e2), 171e177.
  58. Wang, X.W.1, Li, J.S., Guo, T.K., Zhen, B., Kong, Q.X., Yi, B., Li, Z., Song, N., Jin, M., Wu, X.M., Xiao, W.J., Zhu, X.M., Gu, C.Q., Yin, J., Wei, W., Yao, W., Liu, C., Li, J.F., Ou, G.R., Wang, M.N., Fang, T.Y., Wang, G.J., Qiu, Y.H., Wu, H.H., Chao, F.H., Li, J.W., 2005b Jul 28. Excretion and detection of SARS coronavirus and its nucleic acid from digestive system. World J. Gastroenterol. 11 (28), 4390e4395.
  59. Werth, A. J. Models of hydrodynamic flow in the bowhead whale filter feeding 423 apparatus. J. Exp. Biol. 207, 3569–3580 (2004). doi:10.1242/jeb.01202
424
  60. White, W. R. World water: resources, usage and the role of man made reservoirs, 413 FR/R0012. (2019).
  61. WHO. Water, sanitation, hygiene, and waste water management for the COVID-19 394 virus: interim guidance. (2020).
  62. Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. 345 Nature 581, 465–469 (2020). doi:10.1038/s41586-020-2196-x
  63. Wu, F., Xiao, A., Zhang, J., Gu, X., Lee, W.L., Kauffman, K., Hanage, W., Matus, M., Ghaeli, N., Endo, N., Duvallet, C., Moniz, K., Erickson, T., Chai, P., Thompson, J., Alm, E., 2020. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. medRxiv preprint. https://doi.org/10.1101/2020.04. 05.20051540.
  64. Wurtzer, S. et al. Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. medRxiv 2020.04.12.20062679 
(2020). doi:10.1101/2020.04.12.20062679 

  65. Wurtzer, S., Marechal, V., Mouchel, J.M., 2020. Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. medRxiv preprint. https://doi.org/10.1101/2020.04.12.20062679.

  66. Xiao, F. et al. Infectious SARS-CoV-2 in Feces of Patient with Severe COVID-19. 343 Emerg. Infect. Dis. 26, (2020). doi:10.3201/eid2608.200681
  67. Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., Shan, H., 2020. Evidence for Gastrointestinal Infection of SARS-CoV-2 [published online ahead of print, 2020 Mar 3]. Gastroenterology. https://doi.org/10.1053/j.gastro.2020.02.055.

  68. Zaneti, R. N. et al. QMRA of SARS-CoV-2 for workers in wastewater treatment 383 plants. medRxiv 2020.05.28.20116277 (2020). doi:10.1101/2020.05.28.20116277
  69. ...