COVID-19: Politics, Economy, Social determinants
Fahim Aslam. Controlling Pandemics: solutions to prevent the next pandemic. Environmental Epidemiology. Preprint. 07.06.2020. DOI: 10.13140/RG.2.2.16370.94402
Fiedler, Beth Ann. Diffusion of COVID-19 in the United States: Politics, Social Determinants, or Neither? Environmental Epidemiology. 2020,14, 4, 4-25.
Fiedler Beth Ann. Investigating COVID-19: Quantifying recurring methodological problems in the study of infectious disease, part 1. Environmental Epidemiology. 2020, 14, 3, 4 – 12.
Fiedler Beth Ann. Investigating COVID-19: Quantifying recurring methodological problems in the study of infectious disease, part 2. Environmental Epidemiology. 2020, 14, 3, 13 – 22.
Medical Geography & Infectious Ecology of COVID-19
GIS in Medical Geography & Infectious Ecology
Fiedler, Beth Ann and Nikolaenko, Dmitry. Investigating COVID-19: Quantifying recurring methodological problems in the study of infectious disease, Introduction. Environmental Epidemiology. 2020, 14, 2, 4 – 12.
Fiedler, Beth Ann and Nikolaenko, Dmitry. Investigating COVID-19: Quantifying recurring methodological problems in the study of infectious disease, Introduction. Preprint. DOI: 10.13140/RG.2.2.28731.77605/1
Nikolaenko, Dmitry & Fiedler, Beth Ann. Dynamic and selective geography of COVID-19: Impact groups and their place in the infection process, Part 1. Environmental Epidemiology. 2020, Preprint (in Russian).
Nikolaenko Dmitry and Beth Ann Fiedler. Dynamic and selective geography of COVID-19: impact groups and their place in the infection process. Part 2. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.24750.46404
Nikolaenko Dmitry and Fiedler Beth Ann. S-Theory about COVID-19: protozoa – microorganisms hydrobionts - human infectious diseases. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.32691.78884
Nikolaenko Dmitry and Beth Ann Fiedler. Experimental Infectious Ecology: hypothesis of origin COVID-19 and its verification. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.16171.80165
Nikolaenko Dmitry and Fiedler Beth Ann. Experimental Infectious Ecology: hypothesis of origin COVID-19 and its verification. Environmental Epidemiology. 2020, Preprint (in English). DOI: 10.13140/RG.2.2.17744.66560
***
Nikolaenko Dmitry. Explanation of COVID-19 based on the Cognitive Standard of Infectious Ecology: An adaptation hypothesis and its experimental verification. Journal of “Environmental Epidemiology”. Preprint. May 23, 2021. DOI: 10.13140/RG.2.2.18321.97122
Nikolaenko Dmitry. Unexpected deterioration of a local infectious situation related to COVID-19: theory and methodology of surveys local infectious activity at the earliest stages of manifestation. July 2020. DOI: 10.13140/RG.2.2.22537.47204
Nikolaenko Dmitry. SARS-CoV-2, COVID-19 and water: bibliography Version 1.2. July 2020. DOI: 10.13140/RG.2.2.26050.20164
Nikolaenko Dmitry. SARS-CoV-2 and the water environment: discovery of the pathogen in the sample dated March 12, 2019 in Barcelona and its interpretation. July 2020. DOI: 10.13140/RG.2.2.31298.40649
Nikolaenko Dmitry. SARS-CoV-2 and water: bibliography. June 2020. DOI: 10.13140/RG.2.2.19878.75849
Nikolaenko Dmitry. Fresh water and COVID-19: a fundamental gap in scientific knowledge regarding manifestation of the pathogenic properties of microorganism. June 2020. DOI: 10.13140/RG.2.2.17611.21287
Nikolaenko Dmitry. Advanced geographical algorithm of the site detection of activation pathogenic properties of microorganisms and adaptation hypothesis of origin COVID-19. Conference: 18.06.2020. Kiev, Ukraine
Nikolaenko Dmitry. COVID-19: pandemic research methodology and terminology of Infectious ecology. June 2020. DOI: 10.13140/RG.2.2.29245.49128
Nikolaenko Dmitry. Advanced geographical algorithm of the site detection of activation pathogenic properties of microorganisms (version 3.1). June 2020. DOI: 10.13140/RG.2.2.20693.86246
Nikolaenko Dmitry. Medical geography and infectious ecology of COVID-19 in the United States: approaches to a systematic GIS description. Environmental Epidemiology. 2020. Preprint. DOI: 10.13140/RG.2.2.28685.97768
Nikolaenko Dmitry. Data on COVID-19: scientific and homely reflection, associated with a pandemic. Environmental Epidemiology. 2020. Preprint. DOI: 10.13140/RG.2.2.31641.65127
Nikolaenko Dmitry. Investigation of Legionella freshwater bodies in connection with the adaptation hypothesis origin of COVID-19: Theory and Methodology. DOI: 10.13140/RG.2.2.23585.63842
Nikolaenko Dmitry. Adaptation hypothesis of the origin COVID-19: clarification of terminology. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.35257.52322
Nikolaenko Dmitry. Adaptation hypothesis of the manifestation of spring viral infectious diseases: case of COVID-19. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.20688.87043
Nikolaenko Dmitry. Attempts at lawsuits against China and the catastrophic failure of dogmatic epidemiology in explaining of COVID-19. May 2020 DOI: 10.13140/RG.2.2.10566.91206
Nikolaenko Dmitry. COVID-19 and stem cell treatment prospects. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.22183.09128
Nikolaenko Dmitry (2020). Crisis as a new opportunity: COVID-19 and the old hidden problems of infectious disease research. Environmental Epidemiology. Preprint (in Russian). DOI: 10.13140/RG.2.2.26872.19209
SARS-CoV-2 and water: bibliography
Done on June 27, 2020
- Ahmed, W., Angel, N., Edson, J., et al., 2020. First Confirmed Detection of SARS-CoV- 2 in Untreated Wastewater in Australia: A Proof of Concept for the Wastewater Surveillance of COVID-19 in the Community. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.138764. 2019 Feb 20.
- Alexyuk, M.S., Turmagambetova, A.S., Alexyuk, P.G., et al., 2017. Comparative study of viromes from freshwater samples of the Ile-Balkhash region of Kazakhstan captured through metagenomic analysis. VirusDis 28, 18e25. https://doi.org/ 10.1007/s13337-016-0353-5.
- Amirian, E. S. Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. Int. J. Infect. Dis. 95, 363–370 (2020).
doi:10.1016/j.ijid.2020.04.057
- Bibby, K., Peccia, J., 2013. Identification of viral pathogen diversity in sewage sludge by metagenome analysis. Environmental Science & Technology 47, 1945e1951.
- Bibby, K., Viau, E., Peccia, J., 2011. Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett. Appl. Microbiol. 52, 386e392.
- Blanco, A., Abid, I., Al-Otaibi, N., Perez-Rodriguez, F.J., Fuentes, C., Guix, S., Pinto, R.M., Bosch, A., 2019. Glass wool concentration optimization for the detection of enveloped and non-enveloped waterborne viruses. Food and Environmental Virology 11, 184e192.
- Carrea, L. & Merchant, C. J. GloboLakes: Lake Surface Water Temperature (LSWT) v4.0 (1995-2016). Cent. Environ. Data Anal. (2019).
doi:10.5285/76a29c5b55204b66a40308fc2ba9cdb3
- Casanova, L., Rutala, W.A., Weber, D.J., Sobsey, M.D., 2009. Survival of surrogate coronaviruses in water. Water Res. 43, 1893e1898.
- Chin, A. et al. Stability of SARS-CoV-2 in different environmental conditions. 341 medRxiv 2020.03.15.20036673 (2020). doi:10.1101/2020.03.15.20036673
- Collomb, J., Laporte, J., Vautherot, J.F., Schwartzbrod, L., 1986. Recherche des coronavirus dans l’eau. Note I. Adsorption et elution des coronavirus sur poudre de verre [Research on coronaviruses in water. I. Adsorption and elution of the coronavirus on glass powder]. Virologie, 37 (2), 95e105.
- Damas, J. et al. Broad Host Range of SARS-CoV-2 Predicted by Comparative and Structural Analysis of ACE2 in Vertebrates. bioRxiv 2020.04.16.045302 (2020).
doi:10.1101/2020.04.16.045302
- Derraik, J. G. B., Anderson, W. A., Connelly, E. A. & Anderson, Y. C. Rapid evidence summary on SARS-CoV-2 survivorship and disinfection, and a reusable
PPE protocol using a double-hit process. medRxiv (2020).
doi:10.1101/2020.04.02.20051409
- Esper, F., Ou, Z., Huang, Y.T., 2010. Human coronaviruses are uncommon in patients with gastrointestinal illness. J. Clin. Virol. 48 (2), 131e133. https://doi.org/ 10.1016/j.jcv.2010.03.007.
- Giuseppina La Rosa, Lucia Bonadonna, Luca Lucentini, Sebastien Kenmoe, Elisabetta Suffredini. Coronavirus in water environments: Occurrence, persistence and concentration methods - A scoping review. Water Research Volume 179, 15 July 2020, 115899. https://doi.org/10.1016/j.watres.2020.115899
- Gundy, P. M., Gerba, C. P. & Pepper, I. L. Survival of Coronaviruses in Water and 355 Wastewater. Food Environ. Virol. 1, 10–14 (2009). doi:10.1007/s12560-008-9001-6
- Gundy, P., Gerba, C., Pepper, I.L., 2019. Survival of coronaviruses in water and wastewater. Food Environ Virol 1 (1), 10, 2009.
- Huyvaert, K. P. et al. Freshwater Clams As Bioconcentrators of Avian Influenza Virus in Water. Vector-Borne Zoonotic Dis. 12, 904–906 (2012).
doi:10.1089/vbz.2012.0993
- Jevsnik, M., Steyer, A., Zrim, T., et al., 2013. Detection of human coronaviruses in simultaneously collected stool samples and nasopharyngeal swabs from hospitalized children with acute gastroenteritis. Virol. J. 10, 46. https://doi.org/10.1186/1743-422X-10-46. Published 2013 Feb 5.
- Jones, T. C. et al. An analysis of SARS-CoV-2 viral load by patient age. Report, 363 (2020).
- Keller, V. D. J., Williams, R. J., Lofthouse, C. & Johnson, A. C. Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors. Environ. Toxicol. Chem. 33, 447–452 (2014). doi:10.1002/etc.2441
- La Rosa G., M. Iaconelli, P. Mancini, G. Bonanno Ferraro, C. Veneri, L. Bonadonna, L. Lucentini, E. Suffredini. First detection of SARS-CoV-2 in untreated wastewaters in Italy. https://doi.org/10.1101/2020.04.25.20079830.
- La Rosa, G. et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. 349 Sci. Total Environ. 736, 139652 (2020). doi:10.1016/j.scitotenv.2020.139652
- La Rosa, G., Bonadonna, L., Lucentini, L., Kenmoe, S. & Suffredini, E. Coronavirus in water environments: Occurrence, persistence and concentration methods - A scoping review. Water Res. 179, 115899 (2020) doi:10.1016/j.watres.2020.115899
- Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J. & Hsueh, P. R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial
Agents 55, 105924 (2020). doi:10.1016/j.ijantimicag.2020.105924
- Lavezzo, E. et al. Suppression of COVID-19 outbreak in the municipality of Vo, Italy. 347 medRxiv 2020.04.17.20053157 (2020). doi:10.1101/2020.04.17.20053157
- Lee, P.-I. & Hsueh, P.-R. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J. Microbiol. Immunol. Infect. 53, 365–367 (2020). doi:10.1016/j.jmii.2020.02.001
- McBride, G. B., Stott, R., Miller, W., Bambic, D. & Wuertz, S. Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States. Water Res. 47, 5282–5297 (2013). doi:10.1016/j.watres.2013.06.001
- Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., Brouwer, A., 2020. Presence of SARS-Coronavirus-2 in sewage. https://doi.org/10.1101/2020.03.29.20045880.
- Nikitin, N., Petrova, E., Trifonova, E. & Karpova, O. Influenza Virus Aerosols in the 418 Air and Their Infectiousness. Adv. Virol. (2014). doi:10.1155/2014/859090
- Nikolaenko Dmitry (2020). Crisis as a new opportunity: COVID-19 and the old hidden problems of infectious disease research. Environmental Epidemiology. Preprint (in Russian). DOI: 10.13140/RG.2.2.26872.19209
- Nikolaenko Dmitry. Adaptation hypothesis of the manifestation of spring viral infectious diseases: case of COVID-19. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.20688.87043
- Nikolaenko Dmitry. Adaptation hypothesis of the origin COVID-19: clarification of terminology. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.35257.52322
- Nikolaenko Dmitry. Advanced geographical algorithm of the site detection of activation pathogenic properties of microorganisms and adaptation hypothesis of origin COVID-19. Conference: 18.06.2020. Kiev, Ukraine
- Nikolaenko Dmitry. Advanced geographical algorithm of the site detection of activation pathogenic properties of microorganisms (version 3.1). June 2020. DOI: 10.13140/RG.2.2.20693.86246
- Nikolaenko Dmitry. COVID-19: pandemic research methodology and terminology of Infectious ecology. June 2020. DOI: 10.13140/RG.2.2.29245.49128
- Nikolaenko Dmitry. Data on COVID-19: scientific and homely reflection, associated with a pandemic. Environmental Epidemiology. 2020. Preprint. DOI: 10.13140/RG.2.2.31641.65127
- Nikolaenko Dmitry. Investigation of Legionella freshwater bodies in connection with the adaptation hypothesis origin of COVID-19: Theory and Methodology. DOI: 10.13140/RG.2.2.23585.63842
- Nikolaenko Dmitry. Medical geography and infectious ecology of COVID-19 in the United States: approaches to a systematic GIS description. Environmental Epidemiology. 2020. Preprint. DOI: 10.13140/RG.2.2.28685.97768
- Nikolaenko Dmitry. Fresh water and COVID-19: a fundamental gap in scientific knowledge regarding manifestation of the pathogenic properties of microorganism. June 2020. DOI: 10.13140/RG.2.2.17611.21287
- Nikolaenko, Dmitry & Fiedler, Beth Ann. Dynamic and selective geography of COVID-19: Impact groups and their place in the infection process, Part 1. Environmental Epidemiology. 2020, Preprint (in Russian).
- Nikolaenko Dmitry and Beth Ann Fiedler. Dynamic and selective geography of COVID-19: impact groups and their place in the infection process. Part 2. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.24750.46404
- Nikolaenko Dmitry and Beth Ann Fiedler. Experimental Infectious Ecology: hypothesis of origin COVID-19 and its verification. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.16171.80165
- Nikolaenko Dmitry and Fiedler Beth Ann. Experimental Infectious Ecology: hypothesis of origin COVID-19 and its verification. Environmental Epidemiology. 2020, Preprint (in English). DOI: 10.13140/RG.2.2.17744.66560
- Nikolaenko Dmitry and Fiedler Beth Ann. S-Theory about COVID-19: protozoa – microorganisms hydrobionts - human infectious diseases. Environmental Epidemiology. 2020, Preprint (in Russian). DOI: 10.13140/RG.2.2.32691.78884
- Olds, H. T. et al. High levels of sewage contamination released from urban areas after storm events: A quantitative survey with sewage specific bacterial indicators. PLOS Med. 15, e1002614 (2018). doi:10.1371/journal.pmed.1002614
- Penn, R., Ward, B. J., Strande, L. & Maurer, M. Review of synthetic human faeces and faecal sludge for sanitation and wastewater research. Water Res. 132, 222–240
(2018). doi:10.1016/j.watres.2017.12.063
- Rodino, K. G. et al. Evaluation of saline, phosphate buffered saline and minimum essential medium as potential alternatives to viral transport media for SARS-CoV-2 testing. Journal of clinical microbiology (2020). doi:10.1128/JCM.00590-20
- Rodríguez, R. A., Polston, P. M., Wu, M. J., Wu, J. & Sobsey, M. D. An improved infectivity assay combining cell culture with real-time PCR for rapid quantification of human adenoviruses 41 and semi-quantification of human adenovirus in sewage.
Water Res. 47, 3183–3191 (2013). doi:10.1016/j.watres.2013.03.022
- Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Crit.
Rev. Environ. Sci. Technol. 45, 1827–1879 (2015).
doi:10.1080/10643389.2014.1000761
- Rusiñol, M. et al. Evidence of viral dissemination and seasonality in a Mediterranean river catchment: Implications for water pollution management. J. Environ. Manage.
159, 58–67 (2015). doi:10.1016/j.jenvman.2015.05.019
- Sedji, M. I. et al. Quantification of human adenovirus and norovirus in river water in the north-east of France. Environ. Sci. Pollut. Res. 25, 30497–30507 (2018). doi:10.1007/s11356-018-3045-4
- Shutler, Jamie & Zaraska, Krzysztof & Holding, Thomas & Machnik, Monika & Uppuluri, Kiranmai & Ashton, Ian & Migdal, Lukasz & Dahiya, Ravinder. (2020). Risk of SARS-CoV-2 infection from contaminated water systems. 10.1101/2020.06.17.20133504.
- Vabret, A., Dina, J., Gouarin, S., Petitjean, J., Corbet, S., Freymuth, F., 2006. Detection of the new human coronavirus HKU1: a report of 6 cases. Clin. Infect. Dis. 42 (5), 634e639. https://doi.org/10.1086/500136.
- Wang, Q., Vlasova, A.N., Kenney, S.P., Saif, L.J., 2019. Emerging and re-emerging coronaviruses in pigs. Curr Opin Virol 34, 39e49. https://doi.org/10.1016/ j.coviro.2018.12.001.
- Wang, X.-W. et al. Study on the resistance of severe acute respiratory syndrome- associated coronavirus. J. Virol. Methods 126, 171–177 (2005).
doi:10.1016/j.jviromet.2005.02.005
- Wang, X.W., Li, J.S., Guo, T.K., et al., 2005c. Concentration and detection of SARS coronavirus in sewage from Xiao tang Shan hospital and the 309th hospital [published correction appears in J virol methods. 2005 dec;130(1-2):210]. J Virol Methods 128 (1e2), 156e161.
- Wang, X.W., Li, J.S., Jin, M., Zhen, B., Kong, Q.X., Song, N., Xiao, W.J., Yin, J., Wei, W., Wang, G.J., By, Si, Guo, B.Z., Liu, C., Ou, G.R., Wang, M.N., Fang, T.Y., Chao, F.H., Li, J.W., 2005a Jun. Study on the resistance of severe acute respiratory syndrome-associated coronavirus. J Virol Methods 126 (1e2), 171e177.
- Wang, X.W.1, Li, J.S., Guo, T.K., Zhen, B., Kong, Q.X., Yi, B., Li, Z., Song, N., Jin, M., Wu, X.M., Xiao, W.J., Zhu, X.M., Gu, C.Q., Yin, J., Wei, W., Yao, W., Liu, C., Li, J.F., Ou, G.R., Wang, M.N., Fang, T.Y., Wang, G.J., Qiu, Y.H., Wu, H.H., Chao, F.H., Li, J.W., 2005b Jul 28. Excretion and detection of SARS coronavirus and its nucleic acid from digestive system. World J. Gastroenterol. 11 (28), 4390e4395.
- Werth, A. J. Models of hydrodynamic flow in the bowhead whale filter feeding 423 apparatus. J. Exp. Biol. 207, 3569–3580 (2004). doi:10.1242/jeb.01202
424
- White, W. R. World water: resources, usage and the role of man made reservoirs, 413 FR/R0012. (2019).
- WHO. Water, sanitation, hygiene, and waste water management for the COVID-19 394 virus: interim guidance. (2020).
- Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. 345 Nature 581, 465–469 (2020). doi:10.1038/s41586-020-2196-x
- Wu, F., Xiao, A., Zhang, J., Gu, X., Lee, W.L., Kauffman, K., Hanage, W., Matus, M., Ghaeli, N., Endo, N., Duvallet, C., Moniz, K., Erickson, T., Chai, P., Thompson, J., Alm, E., 2020. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. medRxiv preprint. https://doi.org/10.1101/2020.04. 05.20051540.
- Wurtzer, S. et al. Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. medRxiv 2020.04.12.20062679
(2020). doi:10.1101/2020.04.12.20062679
- Wurtzer, S., Marechal, V., Mouchel, J.M., 2020. Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. medRxiv preprint. https://doi.org/10.1101/2020.04.12.20062679.
- Xiao, F. et al. Infectious SARS-CoV-2 in Feces of Patient with Severe COVID-19. 343 Emerg. Infect. Dis. 26, (2020). doi:10.3201/eid2608.200681
- Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., Shan, H., 2020. Evidence for Gastrointestinal Infection of SARS-CoV-2 [published online ahead of print, 2020 Mar 3]. Gastroenterology. https://doi.org/10.1053/j.gastro.2020.02.055.
- Zaneti, R. N. et al. QMRA of SARS-CoV-2 for workers in wastewater treatment 383 plants. medRxiv 2020.05.28.20116277 (2020). doi:10.1101/2020.05.28.20116277
- ...